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Neutral and cationic amino acid radicals,2,3 including glycyl,
tyrosyl, cysteinyl, and tryptophanyl,4-6 are implicated in DNA
and protein damage, radical scavenging, and enzymatic reactions
such as electron transfer. Although long-range electron transfer
(ET) along specific paths in proteins is controversial and the
explicit roles of amino acid side chains, peptide bonds, and
hydrogen bonds are uncertain,7,8 tryptophan radical cations
(TrpH•+) are suspected as intermediate electron acceptors in
DNA photolyase4 (DNP) and cytochromec peroxidase5 (CcP).
This contribution describes hybrid Hartree-Fock/density func-
tional9 (HF/DF) calculations for TrpH•+ implying a conforma-
tionally dependent,through-spacespin delocalization from the
π system of the indole side chain onto the alanyl chain. Thus,

we observe an intramolecular interaction between peptide Lewis
bases and the singly occupiedπ orbital of the cationic indole
ring.10 For simplicity, we term this unprecedented effect
anchimeric spin delocalization (ASD) by analogy with the
anchimeric effect in organic chemistrysthe neighboring group
stabilization of carbocationssand discuss the potential implica-
tions of ASD for long-range ET (LRET).
Of the five conformations examined,11 two exhibit spin

delocalization onto the heteroatoms of the side chain. These
two conformations (1 and2; cf. 3 for atom numbering12) are
shown in Newman projections along the CâC3 (CâCγ) bond.
The distinguishing feature of1 and2 is that the alanyl chain is
oriented so that either the nitrogen or the carbonyl oxygen is as
close as 2.790 Å to a carbon on the ring, that is, significantly
closer than the sum of the van der Waals radii.13 We believe
this close contact results in direct polarization and spin
delocalization onto the heteroatom. InViVo this could also result
in a stabilization of the charge on the indolic ring system. The
amount of delocalized spin on each atom is small but significant
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Table 1. Spin Density Distributions Calculated for1 and2 and
Their Respective Diamides, Indolyl Radical Cation,a and Indolyl
Radical Cation with Formamides Modeling CcP-Ib

spin
densitiese 1 2 1-diamidec 2-diamide

IndH•+ +
2NH2CHOd IndH•+

N1 0.09 0.12 0.09 0.12 0.09 0.11
C2 0.18 0.18 0.18 0.17 0.18 0.17
C3 0.34 0.28 0.35 0.27 0.36 0.34
C4 0.23 0.23 0.23 0.23 0.27 0.30
C5 -0.09 -0.06 -0.09 -0.07 -0.10 -0.11
C6 0.18 0.14 0.19 0.15 0.20 0.23
C7 0.03 0.09 0.02 0.09 0.05 0.08
C8 0.05 0.006 0.05 0.01 0.05 0.03
C9 -0.10 -0.09 -0.11 -0.09 -0.10 -0.09
Câ -0.02 -0.01 -0.02 -0.009
CR 0.03 0.02 0.03 0.03
NR 0.05 0.08 0.03 0.06
C′ <0.001 0.01 -0.005 0.008
OR 0.04 0.007 0.05 0.03
Nâ (OH) 0.01 0.001 -00.01 0.005
OR′ 0.01 0.03
CR′ -0.005 -0.01
OHis-175 f 0.04
OMet-230 0.02
total alanyl

chain
0.11 0.11 0.08 0.14

aWalden, S. E.; Wheeler, R. A.J. Chem. Soc., Perkin Trans. 21966,
2663-2672. Walden, S. E.; Wheeler, R. A.J. Phys. Chem.1996, 100,
1530-1535.b The relative magnitudes of the predicted spin densities
at C3 (Cγ) and C2 (Cδ1) are consistent with photochemically induced
nuclear polarization experiments (Stob, S.; Kaptein, R.Photochem.
Photobiol.1989, 49, 565-577; Hore, P. J.; Broadhurst, R. W.Prog.
NMR Spectrosc.1993, 25, 345-402) but not with the electron nuclear
double-resonance experiments for CcP.14 c These numbers are from a
partial optimization using the trcconf1 optimized geometry but optimiz-
ing internal coordinates in the amino acid backbone.d This is from a
single-point calculation based on geometries obtained from IndH•+ +
1NH2CHO calculations modeling each interaction separately.eExperi-
mental spin densities for TrpH•+ from CcP compound I14 N1 ) 0.14,
C2) 0.35, C3) 0.41, and C5) -0.07. f OHis-175and OMet-230 indicate
the formamide oxygen atoms placed in positions with respect to the
indole ring similar to the carbonyl oxygens of the respective residues
in the CcP compound I Laue structure.17
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as an average 0.11 e is found on the alanyl chain (Table 1).
Although experimental evidence for the predicted ASD is
lacking, reported experimental spin densities for TrpH•+ in CcP
compound I only total 0.84 e,14 leaving unaccounted for
0.16 e.
To test the validity of our isolated TrpH•+ as a model for

TrpH•+ involved in peptide (amide) linkages of proteins, we
also performed optimizations on the simplest diamides (substi-
tuting NH2 for OH and CHO for H on the acid and amine,
respectively) for1 and2. This change did alter the dihedral
angles of the alanyl chain and the spin density distributions,
although approximately 0.1 e is still found on the alanyl chain.
We also compared our calculated conformations to those found
in the X-ray diffraction crystal structures of CcP15 and DNP16

and the Laue diffraction structure of CcP compound I (CcP-
I).17,18 Dihedral angles of conformation2 are the most similar
to the Trp conformations found in these enzymes with the C(O)
trans to C3 (Cγ) (cf. CcP-I and DNP). The considerably larger

spin density predicted for OR of 2-diamide than that seen in2
seems incongruent with the carbonyl oxygen being oriented
away from the indole ring. Figure 1, however, shows the singly
occupied molecular orbital of2-diamide and provides a
rationale as the lone-pair-type orbital on OR exhibits positive
overlap with theπ orbital on NR which also overlaps theπ
orbital on Cγ of the indole side chain.

Because the conformations of the two Trp residues which
form radical cations in these enzymes were not identical to either
1 or 2, we examined the experimental structures of CcP-I and
DNP to determine other Lewis bases which might be within
van der Waals distance of the indolylπ system. For CcP and
CcP-I, two such atoms were located, the carbonyl oxygens of
His-175 and Met-230, each within 3.06 Å of side chain
carbons.19 Although the carbonyl oxygen of Val-304 is close
to the ring of Trp-306 in DNP, it is farther away than the
oxygens in CcP and calculations on this system were not
attempted. Optimizations{B3LYP/6-31G(d)} of indolyl radical
cation with an amide carbonyl (as formamide) fixed in the same
position as each of these two oxygens revealedspin density
delocalized onto the formamide oxygens.
Proposed ET pathways in CcP include through-bond (covalent

and H-bonds) and through-space paths, ending with a proposed
transfer of the electron to the porphyrin from TrpH•+-191
through perpendicularπ systems.7,20 One proposed path for
the electron transfer from cytochromec to the heme of CcP
includes a transfer from the sulfur of Met-230 to TrpH•+-191.21

Our results suggest that the electron transfer pathway might

instead include transfer from Met-230 to TrpH•+-191 through
the carbonyl oxygen of the Met residue. The reducing
equivalent may then transfer from Trp-191 to the iron via the
carbonyl oxygen of its proximal ligand, His-175, which is in
direct contact with the Trp-191π system.
In summary, our HF/DF study of TrpH•+ and its diamide

form introduces the concept of anchimeric spin delocalization.
We therefore suggest that magnetic resonance experiments to
determine spin density distributions for amino acid radicals in
proteins, particularly those seeking to unveil the mechanisms
or pathways for LRET, consider ASD between side chains and
the peptide backbone. The conformational dependence of ASD
also lends support to the theory of conformational gating22 of
ET and suggests systems for study to detect conformational
gating.

Supporting Information Available: Calculational details (4 pages).
See any current masthead page for ordering and Internet access
instructions.
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Figure 1. The highest (singly) occupied molecular orbital for2-dia-
mide from a single-point unrestricted Hartree-Fock calculation at the
B3LYP/6-31G(d) optimized geometry. In order to visualize with the
program MOLDEN, the 3-21G basis set was necessary. The relative
coefficients are unchanged by the basis set, however.
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